Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
International Journal of Biomedical Engineering ; (6): 207-212, 2022.
Article in Chinese | WPRIM | ID: wpr-989247

ABSTRACT

Objective:To explore a fast and accurate method to diagnose children's pneumonia according to respiratory signals, so as to avoid the cancer induction caused by traditional X-ray examination.Methods:A Mach Zehnder optical fiber sensor was used to build a respiratory signals(RSPs) detection system, and the RSPs of the monitored children were extracted according to the vibration signal generated by the children's lung rales. Preprocessing methods such as the discrete cosine transform(DCT) were used to compress and denoise the RSPs. Multi-feature extraction of RSPs was conducted through signal processing methods such as the Hilbert transform and autoregressive (AR) model spectrum estimation. A support vector machine (SVM) classification model was constructed to classify the collected RSPs.Results:The accuracy rate of the proposed RSP classification of children with or without pneumonia was 94.41%, which was higher than the previous methods.Conclusions:The children's pneumonia diagnosis system based on an optical fiber sensor has a higher detection accuracy, and is expected to be widely used in clinical practice.

2.
Acta Pharmaceutica Sinica B ; (6): 3139-3155, 2022.
Article in English | WPRIM | ID: wpr-939955

ABSTRACT

Aberrant activation of oncogenic signaling pathways in tumors can promote resistance to the antitumor immune response. However, single blockade of these pathways is usually ineffective because of the complex crosstalk and feedback among oncogenic signaling pathways. The enhanced toxicity of free small molecule inhibitor combinations is considered an insurmountable barrier to their clinical applications. To circumvent this issue, we rationally designed an effective tumor microenvironment-activatable prodrug nanomicelle (PNM) for cancer therapy. PNM was engineered by integrating the PI3K/mTOR inhibitor PF-04691502 (PF) and the broad spectrum CDK inhibitor flavopiridol (Flav) into a single nanoplatform, which showed tumor-specific accumulation, activation and deep penetration in response to the high glutathione (GSH) tumoral microenvironment. The codelivery of PF and Flav could trigger gasdermin E (GSDME)-based immunogenic pyroptosis of tumor cells to elicit a robust antitumor immune response. Furthermore, the combination of PNM-induced immunogenic pyroptosis with anti-programmed cell death-1 (αPD-1) immunotherapy further boosted the antitumor effect and prolonged the survival time of mice. Collectively, these results indicated that the pyroptosis-induced nanoplatform codelivery of PI3K/mTOR and CDK inhibitors can reprogram the immunosuppressive tumor microenvironment and efficiently improve checkpoint blockade cancer immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL